7/16/2023 Admin

Azure OpenAI RAG Pattern using a SQL Vector Database


Azure OpenAI is a powerful natural language generation service that can create engaging and realistic text. However, sometimes you may want to customize your text with your own business data, such as your company name, products, services, etc.

In this article, we will show you how to use a vector database to store and retrieve your business data and use it to enhance your OpenAI completions text. You will learn how to create a vector database, how to query it using natural language, and how to integrate it with OpenAI completions.

Most importantly we will show how to use a normal SQL server database to save hundreds, even thousands of dollars than if you used a normal vector database.

One of the advantages of using a vector database is that you can feed the granular search results to an OpenAI prompt to produce completions, which can provide answers based on the facts from your data.

This is similar to what Bing Chat and Google Bard are doing, but with your own private data. Also, when using the Microsoft OpenAI service, your data stays private and secure.

 

Explore The Sample Application

image

When you set-up and run the sample application (located on the Downloads page of this site), the first step is to navigate to the Data page and click the LOAD DATA button.

image

Enter a title for the Article and paste in the contents for the Article and click the SUBMIT button.

image

The contents of the Article will be split up into chunks of 200 word segments and will be passed to OpenAI to create embeddings.

The embeddings will consist of an array of vectors that will be stored in the SQL server database.

image

A popup will indicate when the process is complete.

image

The Article will display in the Article list.

image

The structure of the database is that the Article table has associated records stored in the ArticleDetail table and they have associated vectors stored in the ArticleVectorData table.

image

Each ArticleDetail contains an array of 1536 vectors, each stored in a separate row in the ArticleVectorData table.

Each vector for a ArticleDetail has a vector_value_id that is the sequential position of the vector in the array of vectors returned by the embedding for an ArticleDetail.

To compare the vectors (stored in the vector_value field) that we get from the search request (in the next step), we will use a cosign similarity calculation.

We will match each vector using its vector_value_id for each vector.

image

Navigate to the Home page.

 image

When we enter a search request and press the SEARCH button, we can click on the SEARCH RESULTS tab to see the top 10 results retrieved from the vector search.

The results will indicate the Article and the content from the chunk.

The match percentage will be shown, and the chunks in each Article will be listed in the order that they appear in the Article.

This is important because we need to feed the chunks to the prompt that will be sent to the OpenAI completion API in order so that the information makes sense to the OpenAI language model.

 image

Clicking on the Chat tab will display the response from the model after the results of the vector search have been passed to the completion prompt.

The RAG Pattern

image

As described in the article: Bring Your Own Data to Azure OpenAI the RAG pattern is a technique for building natural language generation systems that can retrieve and use relevant information from external sources.

image

The concept is to first retrieve a set of passages that are related to the search query, then use them to supply grounding to the prompt, to finally generate a natural language response that incorporates the retrieved information.

Getting Embeddings

To obtain the vectors needed for the vector search, we process the text by calling an OpenAI model that produces embeddings that consist of an array of floats.

An embedding is a mathematical representation of a word or phrase that captures its meaning in a high-dimensional space.

image

For example, if a query is entered regarding playing audio in a Blazor application.

image

The query is turned into embeddings and cosign similarity is used to calculate its vectors against the vectors in the text chunks stored in the database.  

The text chunks, associated with the closest matching vectors, is then provided to the prompt, as grounding, that is then passed to the Azure OpenAI service.

 

Setting Up Azure OpenAI

image

See the article: What Is Azure OpenAI And Why Would You Want To Use It? for instructions on gaining access and setting up Azure OpenAI.

image

Follow the Deploy A Model section in that article for instructions on how to deploy a model.

In this case, select the text-embedding-ada-002 model and give it the Deployment name of text-embedding-ada-002.

This model will be used to obtain the embeddings that will provide the vector data we will then store in the database.

image

Select the model deployment, select Edit deployment, expand Advanced options, and set the Tokens per Minute to at least 120K.

Create The Application

image

We will start with the code for the project AzureOpenAIChat created in the article Creating A Blazor Chat Application With Azure OpenAI (you can download the code from the Downloads page on this site).

Open it in Visual Studio 2022 (or higher).

image

Install the following Nuget packages:

Note: Radzen requires additional set-up. Follow the directions here: https://blazor.radzen.com/get-started

Ensure you configure Dialog, Notification, ContextMenu and Tooltip components.

 

image

Also, install EF Core Power Tools in your Visual Studio. This will be used to create the files needed to implement the DataContext.

Create The Database

image

You will need access to a SQL Server.

You can download the free SQL Server 2022 Developer edition at the following link: https://www.microsoft.com/en-us/sql-server/sql-server-downloads.

image

In the SQL Server, create a new database called: AzureOpenAIChatSQLVector.

Add a user with db owner permissions. Note the account username and password, you will need it later.

Run the following script to create the required tables, that will store the article contents and the associated vector data, and the function used to perform searches on the vector data:

 

SET ANSI_NULLS ON
GO
SET QUOTED_IDENTIFIER ON
GO
IF NOT EXISTS (SELECT * FROM sys.objects WHERE object_id = OBJECT_ID(N'[dbo].[Article]') AND type in (N'U'))
BEGIN
CREATE TABLE [dbo].[Article](
	[Id] [int] IDENTITY(1,1) NOT NULL,
	[ArticleName] [nvarchar](250) NOT NULL,
 CONSTRAINT [PK_Article] PRIMARY KEY CLUSTERED 
(
	[Id] ASC
)WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF, IGNORE_DUP_KEY = OFF, ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = ON) ON [PRIMARY]
) ON [PRIMARY]
END
GO
SET ANSI_NULLS ON
GO
SET QUOTED_IDENTIFIER ON
GO
IF NOT EXISTS (SELECT * FROM sys.objects WHERE object_id = OBJECT_ID(N'[dbo].[ArticleDetail]') AND type in (N'U'))
BEGIN
CREATE TABLE [dbo].[ArticleDetail](
	[Id] [int] IDENTITY(1,1) NOT NULL,
	[ArticleId] [int] NOT NULL,
	[ArticleSequence] [int] NOT NULL,
	[ArticleContent] [nvarchar](max) NULL,
 CONSTRAINT [PK_ArticleDetail] PRIMARY KEY CLUSTERED 
(
	[Id] ASC
)WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF, IGNORE_DUP_KEY = OFF, ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = ON) ON [PRIMARY]
) ON [PRIMARY] TEXTIMAGE_ON [PRIMARY]
END
GO
SET ANSI_NULLS ON
GO
SET QUOTED_IDENTIFIER ON
GO
IF NOT EXISTS (SELECT * FROM sys.objects WHERE object_id = OBJECT_ID(N'[dbo].[ArticleVectorData]') AND type in (N'U'))
BEGIN
CREATE TABLE [dbo].[ArticleVectorData](
	[Id] [int] IDENTITY(1,1) NOT NULL,
	[ArticleDetailId] [int] NOT NULL,
	[vector_value_id] [int] NOT NULL,
	[vector_value] [float] NOT NULL,
 CONSTRAINT [PK_ArticleVectorData] PRIMARY KEY CLUSTERED 
(
	[Id] ASC
)WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF, IGNORE_DUP_KEY = OFF, ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = ON) ON [PRIMARY]
) ON [PRIMARY]
END
GO
SET ANSI_NULLS ON
GO
SET QUOTED_IDENTIFIER ON
GO

IF NOT EXISTS (SELECT * FROM sys.objects WHERE object_id = OBJECT_ID(N'[dbo].[SimilarContentArticles]')

AND type in (N'FN', N'IF', N'TF', N'FS', N'FT'))

BEGIN
execute dbo.sp_executesql @statement = N'/*
    From GitHub project: Azure-Samples/azure-sql-db-openai
*/
CREATE   function [dbo].[SimilarContentArticles](@vector nvarchar(max))
returns table
as
return with cteVector as
(
    select 
        cast([key] as int) as [vector_value_id],
        cast([value] as float) as [vector_value]
    from 
        openjson(@vector)
),
cteSimilar as
(
select top (10)
    v2.ArticleDetailId, 
    sum(v1.[vector_value] * v2.[vector_value]) / 
        (
            sqrt(sum(v1.[vector_value] * v1.[vector_value])) 
            * 
            sqrt(sum(v2.[vector_value] * v2.[vector_value]))
        ) as cosine_distance
from 
    cteVector v1
inner join 
    dbo.ArticleVectorData v2 on v1.vector_value_id = v2.vector_value_id
group by
    v2.ArticleDetailId
order by
    cosine_distance desc
)
select 
    (select [ArticleName] from [Article] where id = a.ArticleId) as ArticleName,
    a.ArticleContent,
    a.ArticleSequence,
    r.cosine_distance
from 
    cteSimilar r
inner join 
    dbo.[ArticleDetail] a on r.ArticleDetailId = a.id
' 
END
GO
IF NOT EXISTS (SELECT * FROM sys.indexes WHERE object_id = OBJECT_ID(N'[dbo].[ArticleVectorData]') AND name = N'ArticleDetailsIdClusteredColumnStoreIndex')
CREATE NONCLUSTERED COLUMNSTORE INDEX [ArticleDetailsIdClusteredColumnStoreIndex] ON [dbo].[ArticleVectorData]
(
	[ArticleDetailId]
)WITH (DROP_EXISTING = OFF, COMPRESSION_DELAY = 0) ON [PRIMARY]
GO
IF NOT EXISTS (SELECT * FROM sys.foreign_keys WHERE object_id = OBJECT_ID(N'[dbo].[FK_ArticleDetail_Article]') AND parent_object_id = OBJECT_ID(N'[dbo].[ArticleDetail]'))
ALTER TABLE [dbo].[ArticleDetail]  WITH CHECK ADD  CONSTRAINT [FK_ArticleDetail_Article] FOREIGN KEY([ArticleId])
REFERENCES [dbo].[Article] ([Id])
ON DELETE CASCADE
GO
IF  EXISTS (SELECT * FROM sys.foreign_keys WHERE object_id = OBJECT_ID(N'[dbo].[FK_ArticleDetail_Article]') AND parent_object_id = OBJECT_ID(N'[dbo].[ArticleDetail]'))
ALTER TABLE [dbo].[ArticleDetail] CHECK CONSTRAINT [FK_ArticleDetail_Article]
GO
IF NOT EXISTS (SELECT * FROM sys.foreign_keys WHERE object_id = OBJECT_ID(N'[dbo].[FK_ArticleVectorData_ArticleDetail]') AND parent_object_id = OBJECT_ID(N'[dbo].[ArticleVectorData]'))
ALTER TABLE [dbo].[ArticleVectorData]  WITH CHECK ADD  CONSTRAINT [FK_ArticleVectorData_ArticleDetail] FOREIGN KEY([ArticleDetailId])
REFERENCES [dbo].[ArticleDetail] ([Id])
ON DELETE CASCADE
GO
IF  EXISTS (SELECT * FROM sys.foreign_keys WHERE object_id = OBJECT_ID(N'[dbo].[FK_ArticleVectorData_ArticleDetail]') AND parent_object_id = OBJECT_ID(N'[dbo].[ArticleVectorData]'))
ALTER TABLE [dbo].[ArticleVectorData] CHECK CONSTRAINT [FK_ArticleVectorData_ArticleDetail]
GO

A key to this solution is that the function, used to search the vector data, runs fast because we created the following columstore index when we created the database table.

(See: Vector Similarity Search with Azure SQL database and OpenAI for more information):

 
CREATE NONCLUSTERED COLUMNSTORE INDEX 
[ArticleDetailsIdClusteredColumnStoreIndex] ON 
[dbo].[ArticleVectorData]
(
	[ArticleDetailId]
)WITH (DROP_EXISTING = OFF, COMPRESSION_DELAY = 0) ON [PRIMARY]
 

Create The DataContext

image

Right-click on the Project node, then select EF Core Power Tools, then Reverse Engineer.

image

Click Add to open the dialog to add a connection to the database.

Once the database connection is selected, click OK.

image

Select all the database objects then click OK.

image

Keep the default values and click OK.

image

The DataContext and the associated class files will be created.

image

Open the appsettings.json file and add a connection string like the following (replacing the values with values that will connect to your database):

 

  "ConnectionStrings": {
    "DefaultConnection": "Data Source=(local);initial catalog=AzureOpenAIChatSQLVector;TrustServerCertificate=True;persist security info=True;user id={your database user};password={your password};"
  }

 

image

Finally, add the following lines to the Program.cs file to instantiate the DataContext and to pass it the database connection from appsettings.json:

 

    // Database connection
    builder.Services.AddDbContext<AzureOpenAIChatSQLVectorContext>(options =>
    options.UseSqlServer(builder.Configuration.GetConnectionString("DefaultConnection")));

 

Create The Service

image

Next we will add the data service and its supporting classes that will be called by the code in the .razor pages.

In the Models folder, add a folder called DTO with the following classes:

 

ArticleDTO.cs

 

#nullable disable
namespace AzureOpenAIChat.Models.DTO
{
    public class ArticleDTO
    {
        public string Title { get; set; }
        public string Contents { get; set; }
    }
}

 

ArticleResultsDTO.cs

 

#nullable disable
namespace AzureOpenAIChat.Models.DTO
{
    public class ArticleResultsDTO
    {
        public string Article { get; set; }
        public int Sequence { get; set; }
        public string Contents { get; set; }
        public double Match { get; set; }
    }
}

 

EmbeddingDTO.cs

 

#nullable disable
using AzureOpenAIChat;
namespace AzureOpenAIChat.Models.DTO
{
    public class EmbeddingDTO
    {
        public string Text { get; set; }
        public float[] Values { get; set; }
    }
}

 

VectorData.cs

 

namespace AzureOpenAIChat.Models.DTO;
public class VectorData
{
    public double VectorValue { get; set; }
}

 

image

In the Models folder add a file called AzureOpenAIChatSQLVectorService.cs using the following code:

 

#nullable disable
using Azure.AI.OpenAI;
using AzureOpenAIChat.Models;
using Microsoft.EntityFrameworkCore;
namespace AzureOpenAIChat.Data
{
    public class AzureOpenAIChatSQLVectorService
    {
        private readonly AzureOpenAIChatSQLVectorContext _context;
        public AzureOpenAIChatSQLVectorService(
            AzureOpenAIChatSQLVectorContext context)
        {
            _context = context;
        }
        public async Task<List<Article>>
            GetArticlesAsync()
        {
            // Get Articles including ArticleDetail           
            return await _context.Article
                .Include(a => a.ArticleDetail)
                .AsNoTracking().ToListAsync();
        }
        public async Task<Article> GetArticleByIdAsync(int id)
        {
            // Get Article including ArticleDetail
            return await _context.Article
                .Include(a => a.ArticleDetail)
                .AsNoTracking()
                .FirstOrDefaultAsync(m => m.Id == id);
        }
        // Add Article
        public async Task<Article> AddArticleAsync(Article article)
        {
            _context.Article.Add(article);
            await _context.SaveChangesAsync();
            return article;
        }
        // Add ArticleDetail
        public async Task<ArticleDetail> AddArticleDetailAsync(
            ArticleDetail articleDetail, Embeddings embeddings)
        {
            _context.ArticleDetail.Add(articleDetail);
            await _context.SaveChangesAsync();
            // Get Embedding Vectors
            var EmbeddingVectors =
                embeddings.Data[0].Embedding
                .Select(d => (float)d).ToArray();
            // Instert all Embedding Vectors
            for (int i = 0; i < EmbeddingVectors.Length; i++)
            {
                var embeddingVector = new ArticleVectorData
                {
                    ArticleDetailId = articleDetail.Id,
                    VectorValueId = i,
                    VectorValue = EmbeddingVectors[i]
                };
                _context.ArticleVectorData.Add(embeddingVector);
            }
            await _context.SaveChangesAsync();
            return articleDetail;
        }
        // Delete Article
        public async Task<Article> DeleteArticleAsync(int id)
        {
            var article = await _context.Article.FindAsync(id);
            _context.Article.Remove(article);
            await _context.SaveChangesAsync();
            return article;
        }
        // GetSimilarContentArticles
        public List<SimilarContentArticlesResult>
            GetSimilarContentArticles(string vector)
        {
            return _context.SimilarContentArticles(vector).ToList();
        }
    }
}

 

Finally, add the following line to the Program.cs file to register the service:

 

    // Service
    builder.Services.AddScoped<AzureOpenAIChatSQLVectorService>();

 

The Data Page

image

We now want to create the page that will allow data to be added to the database (and the vectors created).

In the Pages folder, add a folder called Dialogs and a page called LoadDataDialog.razor using the following code:

 

@using AzureOpenAIChat.Models.DTO
@inject DialogService DialogService
<div class="row">
    <div class="col-md-12">
        <RadzenTextBox Placeholder="Article Title" @bind-Value="@article.Title" 
        Style="width:100%" />
    </div>
</div>
<br />
<div class="row">
    <div class="col-md-12">
        <RadzenTextArea Placeholder="Article Contents" @bind-Value="@article.Contents" 
        Style="height: 300px; width:100%" />
    </div>
</div>
<div class="row">
    <div class="col-md-12">
        <RadzenButton Text="Submit" ButtonStyle="ButtonStyle.Success" Click="@Submit" />
    </div>
</div>
@code {
    ArticleDTO article = new ArticleDTO();
    void Submit()
    {
        // Pass the article back to the page that opened this dialog
        DialogService.Close(article);
    }
}

image

Next, add a page called RagChat.razor using the following code:

 

@page "/ragchat"
@using Azure.AI.OpenAI;
@using Azure;
@using AzureOpenAIChat.Data;
@using AzureOpenAIChat.Models;
@using AzureOpenAIChat.Models.DTO;
@using AzureOpenAIChat.Pages.Dialogs;
@using System.Text.RegularExpressions;
@inject IConfiguration _configuration
@inject DialogService dialogService
@*
    Using OwningComponentBase ensures that the service and related services
    that share its scope are disposed with the component.
    Otherwise DbContext in ForecastService will live for the life of the
    connection, which may be problematic if clients stay
    connected for a long time.
    We access WeatherForecastService using @Service
*@
@inherits OwningComponentBase<AzureOpenAIChatSQLVectorService>
<PageTitle>RagChat</PageTitle>
<h1>Data</h1>
<RadzenButton Text="Load Data" ButtonStyle="ButtonStyle.Success"
              Click=@OpenLoadDataDialog />
<br />
@if (Status != "")
{
    <br />
    <p style="color:red">@Status</p>
}
<br />
<RadzenGrid Data="@articles" TItem="Article">
    <Columns>
        <RadzenGridColumn TItem="Article"
                          Title=""
                          Width="20%">
            <Template Context="article">
                <RadzenButton Text="Delete" Icon="delete"
                              ButtonStyle="ButtonStyle.Danger"
                              Click="@(() => Delete(article))" />
            </Template>
        </RadzenGridColumn>
        <RadzenGridColumn TItem="Article"
                          Property="ArticleName"
                          Title="Article Name" />
        <RadzenGridColumn TItem="Article"
                          Property="ArticleDetail.Count"
                          Title="Number of Chunks"
                          Width="20%" />
    </Columns>
</RadzenGrid>
@code {
#nullable disable
    string Status = "";
    private List<Article> articles;
    string Endpoint = "";
    string DeploymentOrModelName = "";
    string Key = "";
}

 

Add the following methods to the page…

 

This method will retrieve the Azure OpenAI key and model from the appsettings.json file:

 

    // Initialize the component by setting the organization and API key
    protected override void OnInitialized()
    {
        // Get the Azure OpenAI Service configuration values
        Endpoint =
        _configuration["AzureOpenAIServiceOptions:Endpoint"] ?? "";
        DeploymentOrModelName =
        _configuration["AzureOpenAIServiceOptions:DeploymentOrModelName"] ?? "";
        Key =
        _configuration["AzureOpenAIServiceOptions:Key"] ?? "";
    }

 

This method will call the service to get the list of Articles that have been loaded into the database:

 

   protected override async Task OnInitializedAsync()
    {
        // Get the articles from the database
        articles = await @Service.GetArticlesAsync();
    }

 

This method will open the Dialog (created earlier) and split the contents into chunks of 200 words each and pass the data to Azure OpenAI to get the vectors and store the data in the database:

 

    public async Task OpenLoadDataDialog()
    {
        Status = "";
        try
        {
            // Show the Load Data dialog
            var result = await dialogService.OpenAsync<LoadDataDialog>(
                $"Load Data",
                null,
                new DialogOptions()
                {
                    Width = "700px",
                    Height = "512px",
                    Resizable = true,
                    Draggable = true
                });
            // Get the article from the dialog
            var article = (ArticleDTO)result;
            // Check that article contains data
            if ((article.Title.Trim() != "") && (article.Contents.Trim() != ""))
            {
                // Split the article into chunks
                var ArticleChuks = SplitTextIntoChunks(article.Contents.Trim(), 200);
                // Create Article object
                var objNewArticle = new Article();
                objNewArticle.ArticleName = article.Title;
                // Add article to database
                var InsertArticle = await @Service.AddArticleAsync(objNewArticle);
                // Create a new OpenAIClient object
                // with the provided API key and Endpoint
                OpenAIClient openAIClient = new OpenAIClient(
                    new Uri(Endpoint),
                    new AzureKeyCredential(Key));
                // Add article details to database
                foreach (var chunk in ArticleChuks)
                {
                    // Update the status
                    Status =
                    $"Creating chunk {ArticleChuks.IndexOf(chunk) + 1} of {ArticleChuks.Count}";
                    StateHasChanged();
                    // Get embeddings for the chunk
                    var embeddings = 
                    openAIClient.GetEmbeddings(
                        "text-embedding-ada-002", 
                        new EmbeddingsOptions(chunk)
                    );
                    // Create ArticleDetail object
                    var objNewArticleDetail = new ArticleDetail();
                    objNewArticleDetail.Article = InsertArticle;
                    objNewArticleDetail.ArticleContent = chunk;
                    objNewArticleDetail.ArticleSequence = ArticleChuks.IndexOf(chunk) + 1;
                    // Add article detail to database
                    var InsertArticleDetail =
                    await @Service.AddArticleDetailAsync(objNewArticleDetail, embeddings);
                }
                // Refresh the grid
                Status = "";
                StateHasChanged();
                // Get the articles from the database
                articles = await @Service.GetArticlesAsync();
                // Show a success dialog
                await dialogService.Alert(
                    "Article added to database",
                    "Success",
                    new AlertOptions() { OkButtonText = "Ok" });
                }
        }
        catch (Exception ex)
        {
            Status = ex.Message;
        }
    }

 

Add the following two methods that will be called by the preceding code:

 

    // The method that splits the text into chunks of a given size
    public static List<string> SplitTextIntoChunks(string text, int chunkSize)
    {
        // Initialize an empty list to store the chunks
        List<string> chunks = new List<string>();
        // Fix up text
        var NormalizedText = NormalizeText(text);
        // Split the text by whitespace characters
        string[] words = NormalizedText.Split();
        // Loop through the words and add them to the current chunk
        string currentChunk = "";
        foreach (string word in words)
        {
            // If adding the word would exceed the chunk size,
            // add the current chunk to the list and start a new one
            if (currentChunk.Length + word.Length + 1 > chunkSize)
            {
                chunks.Add(currentChunk);
                currentChunk = "";
            }
            // Add the word to the current chunk with a space
            currentChunk += word + " ";
        }
        // Add the last chunk to the list if it is not empty
        if (currentChunk != "")
        {
            chunks.Add(currentChunk);
        }
        // Return the list of chunks
        return chunks;
    }
    public static string NormalizeText(string s, string sepToken = " \n ")
    {
        // Replace multiple whitespace with single space and trim
        s = Regex.Replace(s, @"\s+", " ").Trim();
        // Remove all instances of ". ,"
        s = Regex.Replace(s, @". ,", "");
        // Remove all instances of multiple dots
        s = s.Replace("..", ".");
        s = s.Replace(". .", ".");
        // Remove all instances of multiple commas
        s = s.Replace("\n", "");
        s = s.Trim();
        return s;
    }

 

Finally, add the following method to allow an article to be deleted from the database:

 

    public async Task Delete(Article article)
    {
        // Show a custom dialog before deleting
        var result = await dialogService.OpenAsync("Delete article", ds =>
        @<RadzenCard Style="padding: 20px;">
        <p Style="margin-bottom: 10px;">Are you sure you want to delete this article?</p>
        <div class="row">
            <div class="col-md-12">
                <RadzenButton Text="Yes"
                              Click="() => ds.Close(true)"
                              ButtonStyle="ButtonStyle.Danger"
                              Style="margin-bottom: 10px; width: 150px" />
                <RadzenButton Text="No"
                              Click="() => ds.Close(false)"
                              ButtonStyle="ButtonStyle.Secondary"
                              Style="margin-bottom: 10px; width: 150px" />
            </div>
        </div>
    </RadzenCard>,
    new DialogOptions() { Width = "600px", Height = "220px" });
        if (result)
        {
            // Delete the article from the database
            var deleteresult = await @Service.DeleteArticleAsync(article.Id);
            articles = await @Service.GetArticlesAsync();
        }
    }

 

image

In the Shared folder, open the NavMenu.razor page and use the following code to add a link to the RagChat.razor page:

 

        <div class="nav-item px-3">
            <NavLink class="nav-link" href="ragchat">
                <span class="oi oi-briefcase" aria-hidden="true"></span> Data
            </NavLink>
        </div>

 

The Index Page

image

We will now create the page that will be used to chat with the data loaded into the database.

Replace all the code in the Index.razor page with the following code, that will add the using statements and inject the services:

 

@using Azure;
@using Markdig;
@using AzureOpenAIChat.Data;
@using AzureOpenAIChat.Models;
@using AzureOpenAIChat.Models.DTO;
@using AzureOpenAIChat.Pages.Dialogs;
@using System.Text.RegularExpressions;
@inject IJSRuntime _jsRuntime
@inject IConfiguration _configuration
@inject NotificationService NotificationService
@inject DialogService dialogService
@*
    Using OwningComponentBase ensures that the service and related services
    that share its scope are disposed with the component.
    Otherwise DbContext in ForecastService will live for the life of the
    connection, which may be problematic if clients stay
    connected for a long time.
    We access WeatherForecastService using @Service
*@
@inherits OwningComponentBase<AzureOpenAIChatSQLVectorService>

 

Add the following code that will create the UI:

 

<PageTitle>Index</PageTitle>
<style>
    textarea {
        border: 1px dashed #888;
        border-radius: 5px;
        width: 80%;
        overflow: auto;
        background: #f7f7f7
    }
    /* improved CSS for speech bubbles */
    .assistant, .user {
        position: relative;
        font-family: arial;
        font-size: 1.1em;
        border-radius: 10px;
        padding: 20px;
        margin-bottom: 20px;
    }
        .assistant:after, .user:after {
            content: '';
            border: 20px solid transparent;
            position: absolute;
            margin-top: -30px;
        }
    .user {
        background: #03a9f4;
        color: #fff;
        margin-left: 20%;
        margin-right: 100px;
        top: 30%;
        text-align: right;
    }
    .assistant {
        background: #4CAF50;
        color: #fff;
        margin-left: 100px;
        margin-right: 20%;
    }
    .user:after {
        border-left-color: #03a9f4;
        border-right: 0;
        right: -20px;
    }
    .assistant:after {
        border-right-color: #4CAF50;
        border-left: 0;
        left: -20px;
    }
    .msg {
        font-size: medium;
    }
</style>
<h1>Blazor ChatGPT</h1>
<RadzenTabs RenderMode="TabRenderMode.Client">
    <Tabs>
        <RadzenTabsItem Text="Chat">
            <div id="chatcontainer" style="height:550px; width:100%; overflow: scroll;">
                @foreach (var item in ChatMessages)
                {
                    <div>
                        @if (item.Role == ChatRole.User)
                        {
                            <div style="float: right; margin-right: 20px; margin-top: 10px">
                                <b>Human</b>
                            </div>
                            <div class="@item.Role">
                                <div class="msg">
                                    @item.Content
                                </div>
                            </div>
                        }
                        @if (item.Role == ChatRole.Assistant)
                        {
                            <div style="float: left; margin-left: 20px; margin-top: 10px">
                                <b>ChatGPT&nbsp;&nbsp;</b>
                            </div>
                            <div class="@item.Role">
                                <div class="msg">
                                    @if (item.Content != null)
                                    {
                                        @((MarkupString)item.Content.ToHtml())
                                    }
                                </div>
                            </div>
                        }
                    </div>
                }
            </div>
            @if (!Processing)
            {
                <textarea rows="3" @bind="prompt" />
                <br />
                <button class="btn btn-primary"
                @onclick="CallSearchData">
                    Call ChatGPT
                </button>
                <span>&nbsp;</span>
                <button class="btn btn-info"
                @onclick="RestartChatGPT">
                    Restart
                </button>
            }
            else
            {
                <br>
                <h4>Processing...</h4>
            }
        </RadzenTabsItem>
        <RadzenTabsItem Text="Search Results">
            <RadzenDataGrid Data="@similarities" TItem="ArticleResultsDTO"
                            AllowFiltering="true" AllowSorting="true" AllowPaging="true">
                <Columns>
                    <RadzenDataGridColumn TItem="ArticleResultsDTO"
                                          Property="Article" Title="Article" Width="30%">
                    </RadzenDataGridColumn>
                    <RadzenDataGridColumn TItem="ArticleResultsDTO"
                                          Property="Sequence" Title="#" Width="10%">
                    </RadzenDataGridColumn>
                    <RadzenDataGridColumn TItem="ArticleResultsDTO"
                                          Property="Contents" Title="Content">
                        <Template Context="data">
                            <p style="white-space:pre-wrap">@data.Contents</p>
                        </Template>
                    </RadzenDataGridColumn>
                    <RadzenDataGridColumn TItem="ArticleResultsDTO"
                                          Property="Match" Title="%"
                                          FormatString="{0:P}" Width="10%">
                    </RadzenDataGridColumn>
                </Columns>
            </RadzenDataGrid>
        </RadzenTabsItem>
    </Tabs>
</RadzenTabs>
<br /><p style="color:red">@ErrorMessage</p>

 

Add the code block to hold the procedural code:

 

@code {
    string Endpoint = "";
    string DeploymentOrModelName = "";
    string Key = "";
    List<ChatMessage> ChatMessages = new List<ChatMessage>();
    string prompt = "";
    string ErrorMessage = "";
    bool Processing = false;
    // Declare an embedding collection and a list to store similarities
    List<ArticleResultsDTO> similarities = new List<ArticleResultsDTO>();
}

 

Add these remaining methods inside the procedural code block.

Add the following method that will retrieve the Azure OpenAI key and model from the appsettings.json file:

 

    protected override void OnInitialized()
    {
        // Get the Azure OpenAI Service configuration values
        Endpoint =
        _configuration["AzureOpenAIServiceOptions:Endpoint"] ?? "";
        DeploymentOrModelName =
        _configuration["AzureOpenAIServiceOptions:DeploymentOrModelName"] ?? "";
        Key =
        _configuration["AzureOpenAIServiceOptions:Key"] ?? "";
        RestartChatGPT();
    }

 

Next add the OnAfterRenderAsync method that will call the ScrollToBottom JavaScript method that is contained on the _Host.cshtml page:

 

    protected override async Task
    OnAfterRenderAsync(bool firstRender)
    {
        try
        {
            await _jsRuntime.InvokeAsync<string>(
                "ScrollToBottom", "chatcontainer"
            );
        }
        catch
        {
            // do nothing if this fails
        }
    }

 

Add the following method that will be raised when the Restart button is clicked:

 

    void RestartChatGPT()
    {
        ErrorMessage = "";
        prompt = "How can I bring my own data to Azure OpenAI?";
        // Create a new list of ChatPrompt objects and initialize it with the
        // system's introductory message
        ChatMessages = new List<ChatMessage>();
        string SystemMessage = "You are helpful Assistant.";
        SystemMessage += "You will always reply with a Markdown formatted response.";
        ChatMessages.Add(
            new ChatMessage(
            ChatRole.System,
            SystemMessage)
        );
        StateHasChanged();
    }

 

Add the method that will create and embedding of the search prompt and then compare its vectors against the vectors stored in the database:

 

    async Task CallSearchData()
    {
        // Set the in-progress flag to true
        Processing = true;
        // Notify the framework that the state has changed and the UI should be updated
        StateHasChanged();
        try
        {
            similarities.Clear();
            // Create a new OpenAIClient object
            // with the provided API key and Endpoint
            OpenAIClient openAIClient = new OpenAIClient(
                new Uri(Endpoint),
                new AzureKeyCredential(Key));
            // Get embeddings for the search text
            var SearchEmbedding =
            openAIClient.GetEmbeddings(
                "text-embedding-ada-002",
                new EmbeddingsOptions(prompt)
            );
            // Get embeddings as an array of floats
            var EmbeddingVectors =
                SearchEmbedding.Value.Data[0].Embedding
                .Select(d => (float)d).ToArray();
            // Loop through the embeddings
            List<VectorData> AllVectors = new List<VectorData>();
            for (int i = 0; i < EmbeddingVectors.Length; i++)
            {
                var embeddingVector = new VectorData
                    {
                        VectorValue = EmbeddingVectors[i]
                    };
                AllVectors.Add(embeddingVector);
            }
            // Convert the floats to a single string to pass to the function
            var VectorsForSearchText =
            "[" + string.Join(",", AllVectors.Select(x => x.VectorValue)) + "]";
            // Call the SQL function to get the similar content articles
            var SimularContentArticles =
            @Service.GetSimilarContentArticles(VectorsForSearchText);
            // Loop through SimularContentArticles
            foreach (var Article in SimularContentArticles)
            {
                // Add to similarities collection
                similarities.Add(
                    new ArticleResultsDTO()
                        {
                            Article = Article.ArticleName,
                            Sequence = Article.ArticleSequence,
                            Contents = Article.ArticleContent,
                            Match = Article.cosine_distance ?? 0
                        }
                    );
            }
            // Sort the results by similarity in descending order
            similarities.Sort((a, b) => b.Match.CompareTo(a.Match));
            // Take the top 10 results
            similarities = similarities.Take(10).ToList();
            // Sort by the first colum then the second column
            similarities.Sort((a, b) => a.Sequence.CompareTo(b.Sequence));
            similarities.Sort((a, b) => a.Article.CompareTo(b.Article));
            // Call Azure OpenAI API
            await CallChatGPT();
        }
        catch (Exception ex)
        {
            // Create an error notification message
            var Notification = new NotificationMessage()
                {
                    Severity = NotificationSeverity.Error,
                    Summary = "Error",
                    Detail = ex.Message,
                    Duration = 40000
                };
            // Show the notification
            NotificationService.Notify(Notification);
            // Set the in-progress flag to false
            Processing = false;
            // Notify the framework that the state has changed
            // and the UI should be updated
            StateHasChanged();
        }
    }

 

The preceding method calls the following method to call the Azure OpenAI service:

 

    async Task CallChatGPT()
    {
        // Set the in-progress flag to true
        Processing = true;
        // Notify the framework that the state has changed and the UI should be updated
        StateHasChanged();
        try
        {
            // Concatonate colum 3 from similarities collection into Knowledge
            string ExistingKnowledge = "";
            foreach (var item in similarities)
            {
                ExistingKnowledge +=
                $"#Article: {item.Article} #Article Contents: {item.Contents}";
            }
            // This model's maximum context length is 8192 tokens
            // Remove old chat messages to avoid exceeding the limit
            RemoveOldChatMessags();
            // Create a new OpenAIClient object
            // with the provided API key and Endpoint
            OpenAIClient client = new OpenAIClient(
                new Uri(Endpoint),
                new AzureKeyCredential(Key));
            // Add the new message to chatMessages
            ChatMessages.Add(new ChatMessage(ChatRole.User, prompt));
            // Add the existing knowledge to the chatMessages list
            ChatMessages.Add(new ChatMessage(ChatRole.System, GetInstruction(ExistingKnowledge)));
            // Create a new ChatCompletionsOptions object
            var chatCompletionsOptions = new ChatCompletionsOptions()
            {
                Temperature = (float)0.0,
                MaxTokens = 2000,
                NucleusSamplingFactor = (float)1.00,
                FrequencyPenalty = 0,
                PresencePenalty = 0,
            };
            // Add the Chat messages to the chatCompletionsOptions object
            foreach (var message in ChatMessages)
            {
                chatCompletionsOptions.Messages.Add(message);
            }
            // Call the GetChatCompletionsAsync method
            Response<ChatCompletions> responseWithoutStream =
            await client.GetChatCompletionsAsync(
                DeploymentOrModelName,
                chatCompletionsOptions);
            // Get the ChatCompletions object from the response
            ChatCompletions result = responseWithoutStream.Value;
            // Create a new Message object with the response and other details
            // and add it to the messages list
            var choice = result.Choices.FirstOrDefault();
            if (choice != null)
            {
                if (choice.Message != null)
                {
                    ChatMessages.Add(choice.Message);
                }
            }
        }
        catch (Exception ex)
        {
            // Create an error notification message
            var Notification = new NotificationMessage()
                {
                    Severity = NotificationSeverity.Error,
                    Summary = "Error",
                    Detail = ex.Message,
                    Duration = 40000
                };
            // Show the notification
            NotificationService.Notify(Notification);
        }
        // Set the in-progress flag to false
        Processing = false;
        // Clear the prompt
        prompt = "";
        // Notify the framework that the state has changed
        // and the UI should be updated
        StateHasChanged();
    }

 

The CallChatGPT method calls the following method to remove older chat messages so that we don’t exceed the number of tokens that the model allows:

 

    int CurrentWordCount = 0;
    private void RemoveOldChatMessags()
    {
        // Copy current chat messages to a new list
        var CopyOfChatMessages = new List<ChatMessage>(ChatMessages);
        // Clear the chat messages
        ChatMessages = new List<ChatMessage>();
        // Create a new LinkedList of ChatMessages
        LinkedList<ChatMessage> ChatPromptsLinkedList = new LinkedList<ChatMessage>();
        // Loop through the ChatMessages and add them to the LinkedList
        foreach (var item in CopyOfChatMessages)
        {
            ChatPromptsLinkedList.AddLast(item);
        }
        // Set the current word count to 0
        CurrentWordCount = 0;
        // Reverse the chat messages to start from the most recent messages
        foreach (var chat in ChatPromptsLinkedList.Reverse())
        {
            if (chat.Content != null)
            {
                int promptWordCount = chat.Content.Split(
                    new char[] { ' ', '\t', '\n', '\r' },
                    StringSplitOptions.RemoveEmptyEntries).Length;
                if (CurrentWordCount + promptWordCount >= 1000)
                {
                    // This message would cause the total to exceed 1000 words,
                    // so break out of the loop
                    break;
                }
                // Add to ChatMessages
                ChatMessages.Insert(0, chat);
                // Update the current word count
                CurrentWordCount += promptWordCount;
            }
        }        
    }

 

The Prompt

The key to the RAG pattern is constructing a prompt that takes in the output from the vector search and uses it as grounding.

When constructing any prompt, the following is recommended:

  1. Explain what you want
  2. Explain what you don't want
  3. Provide examples

This is the code, called by the CallChatGPT method, that will take in the grounding information retrieved from the database (using a vector), and construct the prompt sent to the Azure OpenAI service:

 

    public string GetInstruction(string Knowledge)
    {
        string instruction = $@"
        Answer questions using the given knowledge ONLY.
        For tabular information return it as an HTML table.
        Always return markdown format.
        Each knowledge has a #Article: source name and an #Article Contents: with the actual information
        Do not return the ##Knowledge: section only return the ##Answer: section
        Always include the source name for each knowledge you use in the answer.
        Don't cite knowledge that is not available in the knowledge list.
        If you cannot answer using the knowledge list only, say you don't know.
        You have this knowledge available: {Knowledge}
        ### EXAMPLE 1
        Question: 'What Microsoft Blazor?'
        ##Knowledge:
        #Article: Blazor One #Article Contents: Blazor allows you to build web apps.
        #Article: Blazor One #Article Contents: Both client and server code is written in C#, allowing you to share code and libraries.
        #Article: Blazor Two #Article Contents: It uses C# instead of JavaScript allowing you to share code and libraries.
        ##Answer:
        Blazor apps are composed of reusable web UI components implemented using C#, HTML, and CSS.
        Both client and server code is written in C#, allowing you to share code and libraries.
        References: [Blazor One], [Blazor Two]
        ### EXAMPLE 2
        Question: 'What happens in a performance review'
        ##Knowledge:
        ##Answer:
        I don't know
        ###";
        return instruction.Trim();
    }

 

Links

What Is Azure OpenAI And Why Would You Want To Use It?

Bring Your Own Data to Azure OpenAI

Blazor and Azure OpenAI

Creating A Blazor Chat Application With Azure OpenAI

Download

The project is available on the Downloads page on this site.

You must have Visual Studio 2022 (or higher) installed to run the code.

An unhandled error has occurred. Reload 🗙